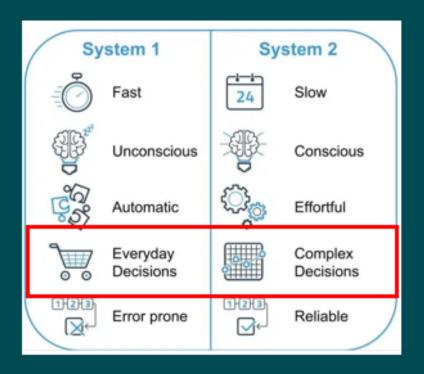
### Herring River Restoration Phase 1 Project Update

- \* Permitting
  - \* Development of Regional Impact Review
- Herring River Executive Council
- Regulatory Oversight Group
- Design & Engineering
- \* Monitoring & Adaptive Management

March 2020 Update for Adaptive Management


### ADAPTIVE MANAGEMENT FOR THE HERRING RIVER


Demystifying the Decision-Making Process

# RECAP OF January Webinar: We Discussed Psychological Basis for Formal Decision-Analysis

ADAPTIVE MANAGEMENT FOR THE HERRING RIVER

HR Stakeholder Group Webinar: January 15, 2020





WHAT MAKES DECISIONS HARD?

# RECAP OF January Webinar: We Walked Through an Simple Decision-Analysis Example, Planning a Family Trip

ADAPTIVE MANAGEMENT FOR THE HERRING RIVER

HR Stakeholder Group Webinar: January 15, 2020

#### DECISION ANALYSIS DEMO

With Objectives and Alternatives specified we can begin to analyze the decision...

#### **OBJECTIVES**

- Minimize family drama
- Minimize costs
- Maximize family togetherness
- Maximize time spent with extended family and old friends
- Optimize trip duration
- Maximize exercise/training opportunities
- Maximize new experiences
- Minimize carbon footprint

#### ALTERNATIVES

- Visit brother's family as usual
- Stay home and cook
- Stay home but go to restaurant
- Visit lost twin at Hawaii surf school
- Visit close friends 300 miles away
- Spend Holiday in Europe and drop son at university in Berlin

## RECAP OF January Webinar: We Described How Consequence Tables Are Used to Compare Objectives and Alternatives

ADAPTIVE MANAGEMENT FOR THE HERRING RIVER

HR Stakeholder Group Webinar: January 15, 2020

#### DECISION ANALYSIS DEMO

PREDICTING OUTCOMES: CONSEQUENCE TABLE

| Original scores               |      |                |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|-------------------------------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| CONSEQUENCE MATRIX            |      |                | Alternatives                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Objectives                    | Goal | Units          | Usual Home - Cook Home - Restaurant Hawaii Friends Europe                                                                       |  |  |  |  |  |  |  |  |  |
| 1. Family Drama               | Min  | % of potential | This is where we enter data                                                                                                     |  |  |  |  |  |  |  |  |  |
| 2. Cost                       | Min  | \$\$\$         | Predictions of expected outcomes                                                                                                |  |  |  |  |  |  |  |  |  |
| 3. Family Time                | Max  | days           | Data come from:                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 4. Extended<br>Family/Friends | Max  | day/pers       | <ul> <li>✓ Direct Source; Cost of Airfare, Carbon Footprint Calc.</li> <li>✓ Past Experience; Drive Time from A to B</li> </ul> |  |  |  |  |  |  |  |  |  |
| 5. Trip Duration              | Max  | day            | ✓ Models (mental, conceptual, numerical); <i>Maps</i>                                                                           |  |  |  |  |  |  |  |  |  |
| 6. Exercise/Training          | Max  | miles          | ✓ Informed Estimates (Elicitation); Judgement of Quality                                                                        |  |  |  |  |  |  |  |  |  |
| 7. New Experiences            | Max  | 0-10           | of New Experience                                                                                                               |  |  |  |  |  |  |  |  |  |
| 8. Carbon Footprint           | Min  | tons C         | oj New Experience                                                                                                               |  |  |  |  |  |  |  |  |  |

# RECAP OF January Webinar: We Explored How Weighting Can Help Analyze Sensitivity to Objectives and Alternatives

ADAPTIVE MANAGEMENT FOR THE HERRING RIVER

HR Stakeholder Group Webinar: January 15, 2020

#### DECISION ANALYSIS DEMO

QUANTIFYING STAKEHOLDER VALUES – SENSITIVITY ANALYSIS

Dad: Family Time and Cost

| CONSEQUENCE MATRIX            |      |                             | A Itern atives    |                |                      |        |         |         |        |  |
|-------------------------------|------|-----------------------------|-------------------|----------------|----------------------|--------|---------|---------|--------|--|
| Objectives                    | Goal | Units                       | U sual<br>Routine | Home -<br>Cook | Home -<br>Restaurant | Hawaii | Friends | E urope | Weight |  |
| 1. Family Drama               | Min  | probability %               | 0.00              | 0.28           | 0.30                 | 0.25   | 0.28    | 0.21    | 0.30   |  |
| 2. Cost                       | Min  | SSS                         | 0.25              | 0.18           | 0.25                 | 0.00   | 0.24    | 0.09    | 0.25   |  |
| 3. Family Time                | M ax | # days                      | 0.03              | 0.00           | 0.00                 | 0.15   | 0.05    | 0.10    | 0.15   |  |
| 4. Extended<br>Family/Friends | Max  | # people days               | 0.03              | 0.00           | 0.00                 | 0.05   | 0.05    | 0.00    | 0.05   |  |
| 5. Trip Duration              | M ax | # days                      | 0.02              | 0.00           | 0.00                 | 0.05   | 0.02    | 0.04    | 0.05   |  |
| 6. Exercise/Training          | M ax | mi. run/wk                  | 0.05              | 0.15           | 0.15                 | 0.00   | 0.00    | 0.00    | 0.15   |  |
| 7. New Experiences            | Max  | constructed<br>scale (0-10) | 0.00              | 0.00           | 0.01                 | 0.05   | 0.02    | 0.04    | 0.05   |  |
| 8. Carbon Footprint           | Min  | tons C                      | 0.00              | 0.00           | 0.00                 | 0.00   | 0.00    | 0.00    | 0.00   |  |

## RECAP OF January Webinar: Finally, We Compared How Our Family Trip Example Relates to Decisions About the Herring RIver

| ADAPTIVE MANAGEMENT FOR THE HERRING RIVER HR Stakeholder Group Webinar: January 15, 2020                 |                                                              |           |        |                |                  |                |                      |        |         |        |       |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|--------|----------------|------------------|----------------|----------------------|--------|---------|--------|-------|--|
| HOW DOES THIS APPLY TO HERRING RIVER?  DATA FOR ALTERNATIVES CAN BE ENTERED FOR BOTH SETS OF OBJECTIVES: |                                                              |           |        |                |                  |                |                      |        |         |        |       |  |
| HERRING RIVER RESTORATION CONSEQUENCE MATRIX  Alternatives                                               |                                                              |           |        |                |                  |                |                      |        |         |        |       |  |
| Objectives                                                                                               | Goal Units 5-ye                                              |           |        | r 15-year      |                  | 25-year        | Slow-<br>15-ye       |        | Sadim   | ent    |       |  |
| 1. Safety at Dike                                                                                        | TRIP P                                                       | LANNING   |        |                |                  |                |                      |        |         |        |       |  |
| 2. Safety in HR                                                                                          |                                                              | EQUENCE N | /ATRIX | (              |                  | Alternatives   |                      |        |         |        |       |  |
| Floodplain  3. Views from Public Locations                                                               | Object                                                       |           | Goal   | Units          | Usual<br>Routine | Home -<br>Cook | Home -<br>Restaurant | Hawaii | Friends | Europe |       |  |
| 4. Views from Private<br>Locations                                                                       | 1. Fam                                                       |           | Min    | % of potential | 90               | 15             | 5                    | 20     | 10      | 30     |       |  |
| 5. Public Rights on                                                                                      | 2. Cos                                                       |           |        | Min            | \$\$\$           | 500            | 5000                 | 300    | 18000   | 1200   | 15000 |  |
| Private Land                                                                                             | 3. Family Time                                               |           | Max    |                | days             | 3              | 1                    | 1      | 10      | 4      | 7     |  |
| 6. Recreation                                                                                            | 4. Exte                                                      |           | Max    | day/pers       | 12               | 0              | 0                    | 20     | 20      | 0      |       |  |
|                                                                                                          | 5. Trip                                                      |           | Max    | day            | 3                | 0              | 0                    | 10     | 4       | 7      |       |  |
|                                                                                                          | 6. Exe                                                       | ing       | Max    | miles          | 30               | 40             | 40                   | 25     | 25      | 25     |       |  |
|                                                                                                          | 7. Nev                                                       | -         | Max    | 0-10           | 0                | 0              | 2                    | 9      | 3       | 7      |       |  |
|                                                                                                          | 8. Carbon Footprint Min tons C 0.30 0.10 0.10 9.00 0.30 6.70 |           |        |                |                  |                |                      |        |         |        |       |  |

### Moving Forward With Herring River Decision-Analysis...

6. Recreation

Max

acres

Just Like the Family Trip Planning Example, We Need Input On Each Adaptive Management Objective In Order to **Evaluate Herring** River Management **Policies** 

|                            |                       |         |                    |                         |                |                     |         |            | _                                  |      | _               |        |
|----------------------------|-----------------------|---------|--------------------|-------------------------|----------------|---------------------|---------|------------|------------------------------------|------|-----------------|--------|
| TRIP PLANI<br>CONSEQUE     | rix                   |         |                    |                         |                |                     |         |            |                                    |      |                 |        |
| Objectives Goal            |                       |         | Units              | Usual<br>Routin<br>e    | Home -<br>Cook | Home -<br>Restauran | Hawaii  | Friends    | Europe                             | Weig | <mark>ht</mark> |        |
| 1. Family D                | rama                  | Min     | % of potential     | 90                      | 15             | 5                   | 20      | 10         | 30                                 |      |                 |        |
| 2. Cost                    |                       | Min     | \$\$\$             | 500                     | 5000           | 300                 | 18000   | 1200       | 15000                              |      |                 |        |
| 3. Family Ti               | ime                   | Max     | days               | 3                       | 1              | 1                   | 10      | 4          | 7                                  |      |                 |        |
| 4. Extended<br>Family/Frie |                       | Max     | day/pers           | 12                      | 0              | 0                   | 20      | 20         | 0                                  |      |                 |        |
| 5. Trip Dura               | 5. Trip Duration Max  |         | day                | 3                       | 0              | 0                   | 10      | 4          | 7                                  |      |                 |        |
| 6.<br>Exercise/Tr          |                       | Max     | miles              | 30                      | 40             | 40                  | 25      | 25         | 25                                 |      |                 |        |
| 7. New<br>Experience       |                       |         | RESTORAT<br>MATRIX | ION                     |                |                     | Alt     | ternatives |                                    |      |                 |        |
| 8. Carbon<br>Footprint     | Carbon                |         | God                | al Units 5-y            |                | ar 15-year          | 25-year | -          | Slow-Fast<br>15-year<br>Slo<br>yea |      | Sediment        | Weight |
| -                          | 1. Safety             | at Dike | Mi                 | n wgtd a                | vg.            |                     |         |            |                                    |      |                 |        |
|                            | 2. Safety<br>Floodpla |         | Mi                 | n # sul<br>basir        |                |                     |         |            |                                    |      |                 |        |
|                            | 3. Views<br>Location  |         | <b>blic</b> Mi     | % o<br>n visua<br>field | al             |                     |         |            |                                    |      |                 |        |
|                            | 4. Views<br>Private l |         | s Mi               | % o<br>n visua<br>field | al             |                     |         |            |                                    |      |                 |        |
|                            | 5. Public             | _       | on Mi              | #<br>n prope            | rtie           |                     |         |            |                                    |      |                 |        |

### Moving Forward With Herring River Decision-Analysis...

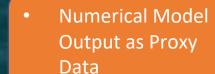
Like the family trip planning example, we need input on each objective in order to evaluate Herring River management policies.

### **Input Predictive Data**

### Gather Community Attitude Data

## **Monitor Objectives to Track Changes**

## **Ecological Objectives**


(ex: hydrology, salinity, vegetation change)



(ex: recreation, safety, public access, aesthetics)



- Numerical Model Output;
- Expert Elicitation (Web-Based Survey)





We need to gather data on community attitudes related to many of the objectives.



We need to collect monitoring data to track changes for all objectives.



How should the HRSG be involved?



How should the HRSG be involved?